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ABSTRACT 
 

In this paper, investigations of interaction and non-interaction between Holographic dark energy and dark 

matter within the frame work of 𝑓(𝐺) gravity using a spatially homogeneous and anisotropic Space-time are 

presented. A viable 𝑓(𝐺) model i.e. 1)(  baGGf  is used to explore the exact solutions of modified field 

equations. Some important cosmological parameters are calculated for the obtained solutions. Moreover, energy 

density and pressure of the universe is analysed for the model under consideration. 

Keywords : Cosmological model, Holographic gas dark energy, 𝑓(𝐺)gravity. 

 

I. INTRODUCTION 

 

The General Theory of Relativity is an astounding 

accomplishment: Together with quantum field theory, 

it is now widely considered to be one of the two 

pillars of modern physics. The theory itself is couched 

in the language of differential geometry, and was a 

pioneer for the use of modern mathematics in physical 

theories, One of the most striking facts about General 

Relativity is that, after almost an entire century, it 

remains completely unchanged: The field equations 

that Einstein communication are still our best 

description of how space-time behaves on 

macroscopic scales. These are 

ijij T
c

G
G

4

8
 , 

where ijG  is the Einstein tensor, ijT  is the energy 

momentum tensor, G is Newton’s constant, and c is 

the speed of light. 

 

General Theory of relativity and the standard model 

of particle physics have both been extremely 

successful in describing our universe both on 

cosmological scales as well as on microscopic scales. 

Despite this amazing success, some observations 

cannot be explained within these otherwise extremely 

successful models. For example, the cosmic microwave 

background, the rotation curves of galaxies or the 

bullet cluster to quote a few, suggest that there is a 

new form of matter that does not shine in the 

electromagnetic spectrum. A central theme in 

cosmology is the perplexing fact that the Universe is 

undergoing an accelerating expansion [1]. Several 

candidates, responsible for this expansion, have been 

proposed in the literature, in particular, dark energy 

models and modified gravity. The reasons and 

motivations that lead to the consideration of 

alternatives to General Relativity are manifold and 

have changed over the years. Some theories are 

motivated by theoretical reasons while others are 

more phenomenological 

 

Instead of considering GR, different kinds of modified 

gravity based on the curvature scalar have been 

performed in the recent years, as )(Rf [2-8], where R 
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is the curvature scalar, the ),( TRf , T  being the trace 

of the energy-momentum tensor [9-14]. 

 

Another modified gravity so called )(Tf -gravity 

based on a space-time possessing absolute parallelism. 

A remarkable feature of )(Tf  theories is that the 

dynamics of tetrads is described by second order 

equations, which is not usual in the context of 

modified gravity. The central piece of a Teleparallel 

Lagrangian is the Weitzenbock torsion. Jamil at al. [15] 

tried to resolve the dark matter problem in the light of

)(Tf gravity and successfully obtained the flat 

rotation curves of galaxies containing dark matter as 

component with the density profile of dark matter in 

galaxies. Setare and Darabi [16] have studied the 

power-law solution when the universe enters in 

phantom phase and shown that such solutions may 

exist for some )(Tf solutions whereas Chirde and 

Shekh [17-19] investigated some cosmological models 

in the same gravity. Recently, Bhoyar et al. [20] 

discussed stability of accelerating Universe with linear 

equation of state in )(Tf  gravity using hybrid 

expansion law.  

 

Among the various modified gravity theories available 

in the literature, the one is Gauss Bonnet (GB) gravity 

which has received great attraction and is named as 

)(Gf  gravity. The equation of motion for this gravity 

is required to be coupled with some scalar field or 

)(Gf  must be some arbitrary function of G. This 

modified gravity could help out in the study of 

inflationary era, transition of acceleration from 

deceleration regimes, passing tests induced by solar 

system experiments and crossing phantom divide line 

for different viable )(Gf models [21, 22]. It is also seen 

that the GB gravity is less constrained than )(Rf

gravity [23]. , The )(Gf gravity also provides an 

efficient platform to study various cosmic issues as an 

alternate to DE [24]. The )(Gf gravity could also be 

very helpful for the study of finite time future 

singularities as well as the universe acceleration 

during late time epochs [25]. Nojiri et al. [26] have 

discussed some fundamental cosmic issues, like 

inflation, late-time acceleration, bouncing cosmology 

and claimed that some modified theories of gravity, 

like )(Rf , )(Gf  and )(Tf theories (where T is the 

torsion scalar) could be used as a viable mathematical 

tool for analysing the clear picture of our universe. 

The general formalism for ECs are derived in )(Gf

gravity by Garcia et al. [27]. Nojiri et al. [28] presented 

some specific realistic and viable )(Gf models by 

analysing the dynamical behaviour of WEC. 

Banijamali et al. [29] analysed the distribution of 

WEC for a class of consistent )(Gf models and 

claimed that power law model of the type 
mGGf )(  would satisfy WEC on setting 0 . 

 

2. Field equations and𝒇(𝑮)gravity: 

 

Modified GB gravity is described by the action 

   


 , )( 
2

1 4 gSGfRgxdS M    (1) 

where κ is the coupling constant, g is the determinant 

of the metric tensor g , and   ,gSM  is the 

matter action, in which matter is minimally coupled 

to the metric tensor and ψ denotes the matter fields. 

This coupling of matter to the metric tensor suggests 

that )(Gf gravity is a purely metric theory of gravity. 

The )(Gf  is an arbitrary function of the GB invariant

G . 





 RRRRRG  42

,   (2) 

where R is the Ricci scalar and R  and R denote 

the Ricci and Riemann tensors. Gravitational field 

equations are obtained by varying the action in 

equation (1) with respect to the metric tensor: 

 

  







  gRgRgRgRgRgRRRgR

2

1
8

2

1

   
  TgfGfF G  , (3) 
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where  denotes the covariant derivative and Gf

represents the derivative of f  with respect to G. 

 

3. Holographic dark energy model in Bianchi type-I 

space-time: 

 

The line element for a spatially homogeneous, 

anisotropic and LRS Bianchi type-I space-time is given 

by 

 2222222 dzdyBdxAdtds  ,  (4) 

Where A and Bare the directional scale factors of 

cosmic time t . 

The corresponding Ricci scalar and GB invariant for 

the space-time (5) are turn out to be 











2

2

222
A

A

B

B

A

A

B

B

A

A
R


,  (5) 











B

B

B

B

A

A

B

B

A

A
G


28

2

2

,   (6) 

where the dot denotes the differentiation with respect 

to t. 

The energy momentum tensor for matter and the 

holographic dark energy is defined as 

vvv TTT  *
,     (7) 

wher vmv uuT    and   pguupT vvv   )( , 

m  and 
  are the energy densities of matter and the 

holographic dark energy respectively and p is the 

pressure of the holographic dark energy. 

The components of energy momentum tensor are 

 pTTT *
33

*
22

*
11  

and )(*
44   pT  .   (8) 

From the equation of motion (3), the Bianchi type-I 

space-time (4) for the fluid of stress energy tensor (8) 

can be written as 

)(242
2

2

2

2


 

mGG
kffGf

B

B

A

A

B

B

A

A

B

B 


,   (9)  

)(816
2

2

2

2


 pkffGf

B

B
f

B

B

B

B

B

B

B

B
GGG







,         (10)  

)(88
















 pkffGf

B

B

A

A
f

A

A

B

B

B

B

A

A

B

B

A

A

B

B

A

A
GGG







.

      (11)  

Here afterwards the dot over the field variable 

represents ordinary differentiation with respect to t. 

Finally, here we have three differential equations with 

five unknowns namely  , , , , pfBA . The solution of 

these equations is discussed in next section. In the 

following we define some kinematical quantities of 

the space-time. 

We define average scale factor and volume 

respectively as 
23 ABVa  .     (12) 

Another important dimensionless kinematical 

quantity is the mean deceleration parameter which 

tells whether the Universe exhibits accelerating 

volumetric expansion or not is   











Hdt

d
q

1
1 ,    (13) 

for 01  q , 0q  and 0q  the Universe 

exhibit accelerating volumetric expansion, 

decelerating volumetric expansion and expansion with 

constant-rate respectively. 

The mean Hubble parameter, which expresses the 

volumetric expansion rate of the Universe, given as 

 ,
3

1
321 HHHH      (14) 

where 21  , HH  and 3 H  are the directional Hubble 

parameter in the direction of x, y and z-axis 

respectively. 

Using equations (12) and (14), we obtain 

 
a

a
HHH

V

V
H


 321

3

1

3

1 .  (15) 

To discuss whether the Universe either approach 

isotropy or not, we define an anisotropy parameter as 
23

13

1










 


i

i
m

H

HH
A .    (16) 

The expansion scalar and shear scalar are defined as 

follows 

B

B

A

A
u


2;  

 ,    (17) 

mAH 22

2

3
 .     (18) 
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4. Exact Matter Dominated Solution of the Field 

Equations 

 

In order to solve the field equations completely, we 

first assume that the interaction between matter and 

holographic dark energy components i.e. the energy 

momentum tensors of the two sources interact / non-

interact minimally and conserved separately. 

In this case, the energy conservation equation of the 

matter leads to 

    Qp
V

V
mmm  


 .   (19) 

In this case, the energy conservation equation of 

holographic dark energy leads to 

    Qp
V

V
  


 .   (20) 

The quantity 0Q , expresses the interaction (for

0Q ) and non-interaction ( 0Q ) term between the 

matter and holographic dark energy components. It 

should be noted that the ideal interaction term must 

be motivated from the theory of quantum gravity. In 

the absence of such a theory, we rely on pure 

dimensional basis for choosing an interaction since we 

are interested to investigate the interaction between 

DE and matter. In our work we consider the 

interaction term in the form of mHQ   which is 

already well-thought-out by Chirde and Shekh [30] 

Secondly consider viable )(Gf model i.e.  

 
1)(  baGGf .     (21) 

Subtracting equation (11) from (10), we get 

0
B

B

A

A

A

A 
.     (22) 

Integrating above equation, we find 

dtBAt    ,     (23) 

where  be the integration constant. 

Also, the normal congruence to the homogeneous 

expansion satisfies the condition that  /  is 

constant, i.e., the expansion scalar is proportional to 

the shear scalar. This gives the relation between the 

metric potentials as 
nBA  ,     (24) 

Using equations (21) and (22), we get 

1)(  n

n

dctA ,    (25) 

1

1

)(  ndctB .    (26) 

Using equations (25) and (26), spatially homogeneous 

and anisotropic LRS Bianchi Type-I space-time with 

within the framework of )(Gf gravity becomes  

     22
)1(

2
2

)1(

2
22 dzdydctdxdctdtds nn

n

 

.   

Above equation represent a singular model and 

singularity exist at point
c

dtt s
 . 

 

Model for 𝑸 = 𝟎 (Non-interaction) 

In this section we discussed the acts of non-

interaction between matter and holographic dark 

energy with the changing aspects of physical 

behaviour of universe. 

The matter density in the Universe as 

















)1(3

)2)(1(

)(
n

n

m

m

dct



 .   (27) 

We assume that the EoS parameter of the perfect fluid 

to be a constant (which is considered by Chirde and 

Shekh [30]) 

Pressure in the Universe is 















)1(3

)2)(1(

)(
n

n

mmm

m

dctp



 .  (28) 

Energy density of holographic dark energy 

 

 






















 























)1(3

)2)(1(

44

1

443

24

22

2

)(
)(

)8)(2(8

)()1(

)8)(2)(1(96

)()1(

)21(1 n

n

b

b

b

b m

dct
dct

b

dctn

bbanc

dctn

nc

k




 , (29) 
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Pressure of holographic dark energy 

 

 




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
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


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
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
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


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









542

2234

44

1

443

222

22

)()1(

)1(528)3)(2)(1(128

)(

)8)(2(

)()1(

)1(52)8)(2)(1(32

)()1(1

b

bb

b

b

b

b

dctn

ncbbbac

dct

ba

dctn

ncbbac

dctn

cnc

k
p





,    30) 

where 
4

3324

)1(

333






n

nccnnc
 . 

Eos parameter for holographic dark energy 

 

 














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



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
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
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


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


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







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





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
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






































)1(3

)2)(1(

44

1

443

24

22

2

542

2234

44

1

443

222

22

)(
)(

)8)(2(8

)()1(

)8)(2)(1(96

)()1(

)21(

)()1(

)1(528)3)(2)(1(128
                      

)(

)8)(2(

)()1(

)1(52)8)(2)(1(32

)()1(

n

n

b

b

b

b

b

bb

b

b

b

b

m

dctk
dct

b

dctn

bbanc

dctn

nc

dctn

ncbbbac

dct

ba

dctn

ncbbac

dctn

cnc










, (31) 

Case-I: (linear: model for 𝒂 = 𝒃 = 𝟏) 

Energy density of holographic dark energy 





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







 





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


)1(3

)2)(1(

22

2

)(8
)()1(

)21(1 n
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dctn
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k



 .       (32) 

Pressure of holographic dark energy 












 22 )()1(

)1(
1

1
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k
p .         (33) 

Eos parameter for holographic dark energy 
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
 .       (34) 

Case-II: (Quadratic: model for 𝒂 = 𝟏, 𝒃 = 𝟐) 

Energy density of holographic dark energy 
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Pressure of holographic dark energy 
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Eos parameter for holographic dark energy 
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Case-III: (Inverse: model for 𝒂 = 𝟏, 𝒃 = 𝟎) 

Energy density of holographic dark energy 
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Pressure of holographic dark energy 
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Model for 𝑸 ≠ 𝟎 (Interaction) 

In this section we discussed the acts of interaction between matter and holographic dark energy with the 
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We assume that the EoS parameter of the perfect fluid to be a constant (which is considered by Chirde and 

Shekh [30]) 

Pressure in the Universe is 















)1(3

)2)(1(

)(
n

n

mmm

m

dctp



 .         (42) 

Energy density of holographic dark energy 
























 























)1(3

)2)(1(

44

1

443

24

22

2

)(
)(

)8)(2(8

)()1(

)8)(2)(1(96

)()1(

)21(1 n

n

b

b

b

b m

dct
dct

b

dctn

bbanc

dctn

nc

k




 . (43) 

Pressure of holographic dark energy 

 

 



























































542

2234

44

1

443

222

22

)()1(

)1(528)3)(2)(1(128

)(

)8)(2(

)()1(

)1(52)8)(2)(1(32

)()1(1

b

bb

b

b

b

b

dctn

ncbbbac

dct

ba

dctn

ncbbac

dctn

cnc

k
p





,   (44) 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

941 

where 
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Case-I: (linear: model for 𝒂 = 𝒃 = 𝟏) 
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Case-II: (Quadratic: model for 𝒂 = 𝟏, 𝒃 = 𝟐) 

Energy density of holographic dark energy 














 













)1(3

)2)(1(

22

2

)(
)()1(

)21(1 n

nm

dct
dctn

nc

k



 ,       (49) 

Pressure of holographic dark energy 












 22 )()1(

1

dctn

cnc

k
p ,          (50) 

Eos parameter for holographic dark energy 









































)1(3

)2)(1(

22

2

22

)(
)()1(

)21(

)()1(

)1(

n

nm

dctk
dctn

nc

dctn

nc


 .       (51) 

Case-III: (Inverse: model for 𝒂 = 𝟏, 𝒃 = 𝟎) 

Energy density of holographic dark energy 
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Eos parameter for holographic dark energy 
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II. Conclusion 

 

In the investigations of interaction and non-

interaction between dark energy and dark matter 

within the frame work of 𝑓(𝐺)  gravity using a 

spatially homogeneous and anisotropic Space-

time following results are obtained. 

From equations (12) to (18), It is observed that 

Spatial volume of the Universe starts with 

constant value at 0t and with big bang at st , 

with the increase of time it always expands. Thus, 

inflation is possible in this model. This shows that 

the Universe starts evolving with zero volume 

and expands with time t. 

At the initial epoch, the Hubble parameter and 

expansion scalar both are constant and 

approaches to zero monotonically at t , but at 

st both are infinitely large. 

The Hubble parameter, scalar expansion and 

shear are the functions of time and decreases as t 

increases and approaches null at later time. This 

suggested that at initial stage of the Universe, the 

expansion of the model is much faster and then 

slow down for later time this shows that the 

evolution of the Universe starts with infinite rate 

and with the expansion it declines. 

It is observed that the spatial volume is zero at 

stt  , where 
c

dt s
  and expansion scalar is 

infinite, which shows that at that point the 

universe starts evolving from zero volume with 

an infinite rate of expansion, the scale factors also 

vanish at stt  and hence the model has a point 

singularity at the initial epoch. Hubble’s factors 

and shear scalar diverge at the singularity. The 

universe exhibits the power law expansion after 

the big bang impulse. As t increases the scale 

factor and spatial volume increase but the 

expansion scalar decreases. Thus the rate of 

expansion slows down with increase in time. 

Shear scalar decrease as t increases. As t →∞, 

scale factors and volume become infinite. The 

anisotropy parameter is constant throughout the 

universe. Hence model does not approaches to 

isotropy. Thus the model represents shearing, 

non-rotating and expanding model of the 

universe with a big-bang start but not 

approaching to isotropy at late times. 
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